
Performance Evaluation Of Tools and Techniques for Representing

Cost-Based Decision Criteria for On-Road Autonomous Navigation †

N. Zimmerman, C. Schlenoff and S. Balakirsky‡

‡Intelligent Systems Division
National Institute of Standards and Technology (NIST)

Gaithersburg, MD 20899-8230.
Tel: (301) 975-8554 Fax: (301) 990-9688

Email: {noah.zimmerman, craig.schlenoff, stephen.balakirsky}@nist.gov

Abstract—The purpose of the work described in this

paper is to analyze rule-based and functional tools to

determine which are best suited for cost generation in

an autonomous vehicular system. In this context, costs

are numeric values that represent a penalty the vehicle

incurs by taking a certain action or occupying a state.

Based on the requirements for this application, the re-

sults showed that Tool A was the most promising for

future research.

Keywords—autonomous, vehicle, cost, on-road, driv-

ing, intelligent, rule-based

I. Introduction

FOR the purpose of this paper, we define an au-
tonomous vehicle as an embodied intelligent vehic-

ular system that can operate for extended periods of
time without human supervision. In the pursuit to in-
still intelligence in the vehicle, the Intelligent Systems
Division, a part of the National Institute of Standards
and Technology (NIST), is applying the 4D/RCS [1]
architecture to serve as the underlying reference model
architecture to control the autonomous vehicle. In [1]
(p.2), 4D/RCS is described as follows:

“The 4D/RCS architecture provides a reference model
for military unmanned vehicles on how their software
components should be identified and organized. It
defines ways of interacting to ensure that missions,
especially those involving unknown or hostile envi-
ronments, can be analyzed, decomposed, distributed,
planned, and executed intelligently, effectively, effi-
ciently and in coordination. To achieve this, the
4D/RCS reference model provides well defined and
highly coordinated sensory processing, world modeling,
knowledge management, cost/benefit analysis, behavior
generation, and messaging functions, as well as the as-
sociated interfaces. The 4D/RCS architecture is based

†Commercial equipment and materials are identified in this
paper in order to adequately specify certain procedures. Such
identification does not imply recommendation or endorsement by
the National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily
the best available for the purpose.

on scientific principles and is consistent with military
hierarchical command doctrine.”

The 4D/RCS architecture is hierarchical in nature,
and is composed of a common node structure at each
level. A typical node is shown in Figure 1 [1] (p.28).
The functional elements within a RCS node are be-
havior generation, sensory processing, world model-
ing, and value judgment. These are supported by a
knowledge database, and a communication system that
interconnects the functional processes and the knowl-
edge database. Each functional element in the node
may have an operator interface. These functional ele-
ments, along with their interconnections, provide the
infrastructure needed to allow a system to truly act
autonomously.

Fig. 1. Typical RCS node structure

For the vehicle to behave in an intelligent fashion,
it must understand the implications of any proposed
action that it takes. Within the autonomous vehicle,
actions are proposed by a planner (a part of the be-
havior generation component), which often evaluates
many plans at any given time to determine which plan
best accomplishes the goals set for the vehicle. One
common approach to planning is based upon a cost
model (often referred to as cost-based planning) [2].
In this approach, costs are assigned to actions that a
vehicle performs and states that a vehicle occupies. By
summing all of the costs that a vehicle incurs by taking
a proposed plan, a metric is created that can be used
to compare the proposed plan against any other plans

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Performance Evaluation of Tools and Techniques for Representing
Cost-Based Decision Criteria for On-Road Autonomous Navigation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Institute of Standards and Technology (NIST),Intelligent
Systems Division,100 Bureau Drive,Gaithersburg,MD,20899

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
PerMIS?03, Performance Metrics for Intelligent Systems, 16-18 Sep 2003, Gaithersburg, MD

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

available to the vehicle at that time. Costs are usually
assigned a priori to actions and states that are appro-
priate to the context in which the vehicle is driving.
In the case of on-road driving, costs may be associated
with:
• Running a stop sign
• Being too close to another vehicle
• Exceeding the speed limit by a certain threshold
• Changing lanes
• etc;

These costs are ubiquitous, and we intend for them
to be used by many systems within the autonomous
vehicle. For example, in addition to planning our own
vehicle’s path, we also expect these costs to be used by
the vehicle’s subsystem that anticipates the actions of
other moving objects in the environment. Since these
costs are expected to be generally useful throughout
the vehicle, there is value in capturing them externally
to any individual system so that they are generally
accessible throughout the architecture. This paper de-
scribes on-going research in exploring the use of exist-
ing tools and languages that could be used to capture
the cost models in an implementation-independent for-
mat within the 4D/RCS framework.

For the purpose of this paper, we will limit our ex-
amples and scope to cost models pertaining to on-road
driving. Many of the efforts within the Intelligent
Systems Division are focusing on autonomous on-road
driving, and as such, the output of this research will
initially be applied to this area. However the results
of this research are not on-road driving specific, and
should be able to lend themselves to any domain in
which real-time planning and control is applied.

This paper is organized as follows: Section II de-
scribes on-going work at NIST in cost-based planning
and shows how the planning system is expected to in-
terface with the cost model. Section III discusses the
full set of tools that were analyzed in this work, and de-
scribes the metrics that were used to down-select these
tools to a smaller set to be further analyzed. Section
IV details the procedure we used to further analyze
the subset of tools that were down-selected in the pre-
vious section. Section V describes the results of the
finer analysis. In Section VI, we conclude the paper
and discuss possible further research.

II. Planning With Costs

As previously mentioned, the costs determined by
this subsystem will be utilized by many other subsys-
tems. However, for the purposes of this evaluation a
single subsystem (the planner component of behavior
generation) was chosen from which to model the exter-
nal interfaces.

The planning system used by the autonomous ve-
hicle is an implementation of the incrementally cre-

Fig. 2. Graph search from node ng to ns

ated graph planning approach described in [2]. As in
many planning algorithms, this algorithm incorporates
a graph search algorithm that strives to find the lowest
cost path through a graph that is composed of nodes
(representing system states) connected by edges (rep-
resenting system actions). The cost of a path through
the graph is defined as the sum of the action costs (the
edges) plus the costs of having occupied the traversed
states (the nodes).

One such graph search algorithm is Dijkstra’s short-
est path algorithm [3]. An example of this algorithm is
shown in Figure 2 and may be summarized as follows:

1. Initialize the search. This includes setting the ini-
tial cost of all nodes (in the figure nodes are shown
as circles and node costs are the bold numbers next
to them) to infinity, and creating an set of open nodes
that only contains the goal node (ng) at a cost of zero.
An open node is a node that the search has reached but
not evaluated. Nodes that have been fully evaluated
are shown as bold circles in the figure.
2. Find the least expensive member of the open set
(denote this node by ncheap) and remove it from the
open set.
3. Compare ncheap to the start node (ns). This search
proceeds from the goal to the start, so if ncheap is equal
to the start node the search is finished. It can be noted
that this search may also proceed from start to goal
without loss of generality.
4. Expand ncheap. During this step, the cost of reach-

ing each of ncheap’s predecessors (nodes connected by
lines in the figure) must be determined. The following
steps occur for each predecessor:
(a) Determine the cost of the edge that connects

ncheap to the predecessor and the cost of occupying
the predecessor.
(b) If the sum of these two costs plus the cost of

ncheap is less then the current cost of the predecessor,
the edge is maintained as a forward pointing edge (set
to bold in the figure), any previous forward pointing
edge is removed, and the predecessor is added to the
open set.
5. Go to step 2.

An example of this algorithm’s application is shown
in Figure 2. The optimal path from any expanded
node to ng lies along the decreasing cost path of bold
edges (follow the arrows). For this example, the search
proceeds from the node labeled ng to the node labeled
ns. The search terminates at the optimal answer when
the node ns is examined for expansion. The optimal
path found may be seen to be ns − n5 − n4 − n2 − ng .

As seen from the above algorithm description, each
loop of the algorithm must make multiple calls to a
cost generating function (step 4a). A single plan may
entail several hundred or even thousands of algorithm
loops, and the cost generator is at the heart of the
loop, making its performance critical. It is this fact
that leads to the requirement for a C++/C/Java API
rather then a central server with socket calls. The
overhead of such a server would be prohibitively large
for this application.

The actual interface to the planning system is quite
simple. As the planner expands nodes, it passes the
current node (and its associated state information) and
the predecessor node (along with its associated state
information) to the cost generator. The cost generator
then returns the incremental cost of the transition plus
the cost of occupying the predecessor node.

III. Coarse Evaluation Procedure

and Results

The first step in the analysis was to identify existing
tools and languages that appeared to satisfy our high-
level requirements, which are:

• C or C++ interface: Because of the heteroge-
neous nature of the systems that will utilize the cost
generator, integration was an integral part of the anal-
ysis. A well-defined application programming interface
(API) to incorporate the cost function into existing
code was of utmost importance. The majority of the
code used in the planner and the moving object pre-
diction software is written in C/C++, giving languages
with C interfaces a distinct advantage for our applica-
tion.

• Cost: Since the 4D/RCS architecture, and its com-
ponents, should not be cost prohibitive to disseminate
and use, the tool must be free or have an extremely
low cost.
• Ease of Use, Understandability, and Main-

tainability: It is important that a person who is us-
ing the tool be able to easily encode and modify the
rules pertaining to the cost model, and be able to eas-
ily see which rules are firing during a given situation.
Rule-based and functional approaches lends themselves
better to representing rules explicitly, unlike impera-
tive approaches which tend to hide much of the rules in
code III-A. As such, our analysis focused on rule-based
and functional approaches.
• Real-time execution: 4D/RCS, as described in
I, is developed for, and has been applied to, domains
for real-time planning and control. As such, any tool
that interfaces with or is built into the architecture
must also lend itself to real-time execution. Though
we would have preferred tools with hard real-time per-
formance, our preliminary research showed that very
few of these tools exists. As such, we allowed for tools
that claimed soft real-time performance.
• Support: For this effort, it is important that the
tool chosen has a strong support community to allow
us to more easily tackle implementation challenges as
they arise.

Through web searches and literature review, eight
tools were identified that showed promise in being able
to represent cost models within the 4D/RCS frame-
work. This listing is not meant to encompass every
tool that is available; it is simply meant to provide a
sampling of the types of tools that have the potential
to satisfy the aforementioned requirements. The tools
that were identified are:

• Tool A - Tool A is a C-based development and de-
livery expert system tool that provides an environment
for the construction of rule and/or object-based expert
systems. Tool A’s knowledge representation can han-
dle rule-based, object-oriented, and procedural knowl-
edge. It can be embedded within procedural code,
called as a subroutine, and integrated with languages
such as C, Java, FORTRAN and ADA.
• Tool B - Tool B is an object-oriented environment
for building and deploying real-time expert system ap-
plications. Tool B is primarily targeted for companies
that are trying to improve their efficiency. It allows
the company a mechanism to reason over information
within their databases in order to monitor potential
problems, diagnose root causes, and recommend cor-
rective actions.
• Tool C - Tool C is a general purpose, purely func-
tional programming language. In particular, it is a
polymorphically typed, lazy, purely functional lan-
guage. It is based on Lamda Calculus and its primary

purpose is to help write and maintain large software
systems. It is especially tailored for writing specifica-
tions which can themselves be executed.
• Tool D - Tool D is a rule engine and scripting en-
vironment written entirely in the Java language. Tool
D was originally inspired by the Tool A expert system
shell, but has grown into a complete, distinct, dynamic
environment of its own. Tool D allows one to build
Java software that has the capacity to ”reason” using
knowledge supplied in the form of declarative rules.
• Tool E - Tool E is a logic/functional programming
language, designed and implemented by a small group
of researchers at the University of Melbourne, Aus-
tralia. It is based on a purely declarative program-
ming paradigm, and was designed to be useful for the
development of large and robust ”real-world” applica-
tions. It provides the traditional logic programming
syntax, but also allows for user-defined functions, inte-
grating logic and functional programming into a single
paradigm. Tool E addresses the problems of large-scale
program development, allowing modularity, separate
compilation, and numerous optimization/time trade-
offs.
• Tool F - The Tool F Programming System is a de-
velopment platform for intelligent, distributed applica-
tions. Tool F is based on the Oz language, which sup-
ports declarative programming, object-oriented pro-
gramming, constraint programming, and concurrency
as part of a coherent whole. Oz is a constraint language
with logic variables, finite domains, finite sets, ratio-
nal trees and record constraints. Tools and libraries
are provided built on the concepts of first-class com-
putation spaces and determinacy-driven disjunctions.
• Tool G - Tool G is a code-generating C++ class
library that encapsulates the Eclipse inference engine.
Tool G can be embedded within C++ applications so
that rules can operate directly on C++ objects and
monitor them as C++ code constructs, modifies, and
destroys them. Tool G uses the Rete Algorithm. The
Rete Algorithm is widely recognized as by far the most
efficient algorithm for the implementation of produc-
tion systems. The algorithm was originally developed
by Charles Forgy in the course of obtaining his PhD
from Carnegie Mellon University in 1979. Rete is the
only algorithm for production systems whose efficiency
is asymptotically independent of the number of rules.
• Tool H - Tool H is a general cognitive architecture
for developing systems that exhibit intelligent behav-
ior. Tool H attempts to: 1) work on the full range
of tasks expected of an intelligent agent, from highly
routine to extremely difficult, open-ended problems,
2) represent and use appropriate forms of knowledge,
such as procedural, declarative, episodic, and possi-
bly iconic, 3) employ the full range of problem solving
methods, 4) interact with the outside world and learn

about all aspects of the tasks and its performance on
them.

The above eight tools were held up to the five require-
ments described previously. Table III of the Appendix
shows the results. The following are the observations
from Table III:
• Due to Tool B and Tool G’s cost, we eliminated them
from further consideration.
• Due to the lack of support and the benefits of a rule-
based language discussed further in III-A, Tool F and
Tool C were eliminated from further consideration.
• Due to the lack of activity on the mailing lists (only
five messages in the last month - August - and none in
the last five days - 8/15/03 - 8/20/03), the uncertainty
behind who was using Tool E and how it was being
used, and the fact that the web page did not appear to
have been updated since 2002, Tool E was eliminated
from further consideration.

This left Tool A, Tool D, and Tool H as the three
tools that were to be further analyzed.

A. Why Rule-Based?

In our initial examination of the tools, it became
clear that the rule-based approaches were the most
natural for this application. The rule-based systems
offered 2 distinct advantages over a functional or pro-
cedural language. Because the ultimate goal is to rep-
resent a real world situation that is governed by explicit
rules, a rule-based system provides an intuitive means
for capturing the logical constraints [5]. Consider the
following trivial example in a rule-based language ver-
sus its imperative counterpart:

(A)

(defrule warning-if-low-tank

(tank (name ?name) (low TRUE) (intact TRUE))

(not (warning low ?name))

=>

(assert (warning low ?name))

(printout t "WARNING: TANK " ?name

" IS LOW!" crlf))

(B)

void warn_if_low(){

for(int i = 0; i < num_tanks; i++){

for(int j = 0; j < num_warnings; j++){

if(((tank[i].low == TRUE &&

tank[i].intact == TRUE)) &&

((warning[j].status != low) &&

(warning[j].name != tank[i].name))){

warning.add(Warning(low,

tank[i].name));

printf(‘‘WARNING: TANK IS LOW’’);

}

}

}

These functions check to see if there is a tank that
is both intact and low, and if so, if there is not al-
ready a warning on record that the tank with the
name matched from the initial clause is dangerously
low. If both of these these conditions evaluated to
true, a warning is added that the given tank is low
and a message is displayed to alert the user. While
this is a contrived example which may be expressed
more eloquently in another imperative language, the
underlying principles are the same as they would be
in a full-scale program. In (A), we see how the pat-
tern matching capabilities of most rule-based systems
offer a more succinct alternative to traditional control
structures. The high level description allows for more
understandable rules. The system is responsible for im-
plementing all of the nested if/else, and looping syntax,
leaving much more readable and maintainable code for
the programmer.

It also illustrates the proclivity of rule-based systems
for representing real-world constraints. If certain con-
ditions are fulfilled, then take the specified action. In
our application, if certain rules of the road are violated,
then some cost is assigned to that action, making it a
less desirable node to expand on the planning graph.

IV. Fine Evaluation Procedure

The rules governing on-road driving are extensive.
For this phase of the project, we selected a small sub-
set of these rules to implement in each of the three en-
vironments that were chosen from Section III. These
rules vary in terms of their complexity and inference
requirements, but together they represent a distributed
sampling from the broad spectrum of situations a ve-
hicle may encounter. The purpose of this phase of the
project was not to encode all of the rules of the road
into every available system, but rather to see how each
of the proposed systems performed given a subset of
the specific requirements for this project.

A. The Rules

With this in mind, five simple driving situations
were modeled in each of the systems. The most triv-
ial of these is speed-limit-violation. This rule checks
the vehicle’s speed against the posted speed limit in
the knowledge base, and asserts a cost if the vehicle is
traveling above or below a given threshold of the speed-
limit. The cost generated is linear with respect to the
difference between the vehicle’s actual speed (Va) and
the posted speed limit (Vp):

cost = K|Va − Vp| (1)

The second rule governs lane changes and addresses
the situation of a vehicle traveling in some lane, LS1,
and considering moving to some other lane LS2. As

described earlier, the planner will utilize the cost func-
tion to accrue costs for each node in a given path.
Whichever path is the least costly is the one that will
be selected. By assigning a small cost to moving from
LS1 to LS2, it deters the planner from changing lanes
in an erratic manner unless there is some other cost
(like that of a collision) which is greater. Therefore,
any lane segment transition will produce a small cost,
while transitions which break laws, such as crossing a
solid line or passing in a marked no-passing-zone, incur
greater costs.

The third rule deals with a vehicle approaching a
stop sign. If the vehicle is positioned at a stop sign,
has a velocity that is greater than zero, and had a
velocity at the previous time-step that was also greater
than zero, then the vehicle never came to a stop. This
will cause the vehicle to incur a cost for running a
stop sign. In the current implementation, this rule will
only be activated if the vehicle is positioned on the
road exactly parallel to the location of the stop sign.
Future versions of the rule will be modified so that it is
activated within a given sphere of influence of the stop
sign such that nodes within that sphere with higher
velocities will have greater costs associated with them.
This will encourage the planner to decelerate slowly as
the vehicle approaches the stop sign.

The fourth rule deals with an intersection of two,
two-lane roads, that do not contain any other vehicles
or moving objects. It dictates the legal lane traver-
sals that a vehicle approaching an intersection can take
given its current lane. Because it is the junction of two,
two-lane roads, there are seven possible traversals that
the vehicle can make as shown in Figure 3. The illegal
transitions will place the vehicle on the wrong side of
the road, and therefore incur a significant cost. Legal
traversals that cause the vehicle to cross oncoming traf-
fic (i.e. legal left-hand-turn, legal-straight) will incur
a nominal cost for the increased risk associated with
this behavior. The cost is small enough so that it is
offset by the cost of traveling further from the desired
destination so that the planner is not discouraged from
making these legal maneuvers.

The final rule also deals with the traversal of an in-
tersection of two, two-lane roads; however in this in-
stance there are other vehicles on the road. The ac-
tual and predicted positions of these vehicles are avail-
able from the moving object prediction software for ten
time-steps into the future along with the prediction un-
certainty at each step. Our vehicle’s position in this
case relates to a projected position of our vehicle with
respect to a plan that the planner is evaluating. There-
fore, this transaction occurs through the use of a query:
the planner provides the tuple (time,location,velocity)
of our projected position at a given time, and the rule
base responds with a cost based on the probability of

Fig. 3. Intersection of two, two-lane roads with the available
lane transitions marked

another vehicle occupying that locale based on the pre-
dictions from the moving object recognition module.

B. Simulated Environment Framework

In order to accurately assess the capabilities of the
tools for the specific needs of the project, it was nec-
essary to see how they performed within the rubric of
a dynamic world model. Because of the preliminary
nature of this phase of the research, integration with
the existing world model was not practical. Instead,
an environment framework was developed to simulate
the flow of data from the world model. This allowed us
to assess the capabilities of the various packages under
dynamic conditions.

The simulated environment framework consists of
two parts: the knowledge modules and the driver. The
knowledge modules represent a snapshot of the data
that would be available from the world model at some
time, Tn. They contain information about our vehi-
cle, other vehicles of interest, signage, lane-markings,
intentions, and intersections. These modules are gen-
erated dynamically from a set of possible values and
allow us to run the systems with any number of itera-
tions to see how increased change in knowledge affects
performance.

The software driver is responsible for linking the
knowledge modules with the knowledge base of the
system. Each iteration, new knowledge is asserted to
the knowledge base as it becomes available, and older
knowledge is retracted as it loses relevancy. This sim-
ulates the changing world model that is typical of a
real-world environment.

V. Fine Evaluation Results

In this section, we will examine the three tools cho-
sen from section III, and discuss how they performed
within the procedure discussed in section IV. The two
main metrics that we will discuss are usability and trial
benchmarks.

A. Usability

Usability can be seen as a subjective metric, so this
discussion will be limited to specific facts about the
tools and how they were able to be used for the purpose
of cost-generation.

Sebesta [4] describes readability as “one of the most
important criteria for judging a programming lan-
guage” (p.8). It is a measure of the ease with which
programs in a given language can be read and under-
stood. This evaluation is domain sensitive, in that a
language may be able to describe some situation very
eloquently, while another application in the same lan-
guage within a different domain could be convoluted.
Because Tool D was orignally inspired by Tool A, the
grammar and syntax are nearly identical, and most
valid Tool D code is still compatible with a Tool A en-
vironment, and vice versa as stated in Tool D’s docu-
mentation. Therefore, the usability evaluation criteria
are nearly identical for the two, with the exception of
support. Both Tool A and Tool D were exceptional
in their readability in the domain of rule oriented cost
generation. The syntax is simple and intuitive, with a
small number of basic components. Tool H was slightly
less readable, and required more expertise to accom-
plish similar tasks to those done in Tool D/Tool A. The
syntax is largely oriented in triples - entity, attribute,
value - and can be confusing to read.

Expressivity is the conveniences a language provides
for accomplishing certain tasks [4]. In section III-A
this was addressed for the scope of all rule-based sys-
tems, and those general comments apply to all three of
the systems chosen. More specifically, Tool H provided
the unique ability to separate the proposal of an action
from the execution of the action. Based upon a private
conversation with a developer of this tool, the division
allows for increased flexibility and more robust con-
flict resolution. Conversely, Tool D/Tool A provided
only minimal support for user-defined conflict resolu-
tion, and recommended in the documentation that this
be left up to the system.

Support also plays a significant role in the usability
of a system. The inevitability of errors and questions
necessitates an active user community to assist the de-
veloper in resolving the problem in a timely fashion.
Tool D has a relatively small, yet extremely active user
community. The Tool D mailing list provides a forum
for discussing problems and questions and is moder-
ated by Ernest Friedman-Hill, the author of Tool D,

who usually replies within hours of a post. In addition,
the on-line references provide extremely helpful guid-
ance for the novice and advanced programmer alike.
Tool H has also been well documented and is being
applied to a variety of different domains by a large
number of academic and research institutions. In ad-
dition, a small company was formed for the purpose of
extending Tool H and applying it to technical domains.
In doing this research, we had several interactions with
this company to overcome technical hurdles. Tool A
documentation is also extensive and provides support
for the basic and more advanced features of the lan-
guage. There is a thread-based discussion group avail-
able from the Tool A website, as well as a mailing list
for Tool A users.

B. Trial Benchmarks

Utilizing the rules from section IV-A and the frame-
work from section IV-B, we ran trials on the systems
to see how they performed under conditions similar
to those specific to our domain. The benchmarks were
done to roughly gauge the performance of the systems.
They are not intended to reflect the overall perfor-
mance of the systems. The timing trials were included
in the analysis as general observations about unopti-
mized code under specific conditions.

Only tables for Tool A and Tool D are included be-
low. Tool H is a fundamentally different type of rule-
based system, both in the way it encodes the rules as
well as the way it decides which rules to fire. Due
to these differences, there was no meaningful correla-
tion between the numbers shown in the Tool A and
Tool D tables and those for Tool H. Instead, the most
meaningful metric for Tool H is the time it takes to
go through one decision cycle. Using a subset of the
rules described in IV-A and without the framework
from IV-B, we ran Tool H through five decision cycles,
at an average speed of 87.5 milliseconds per decision
cycle. However, this does not involve the expensive
input/output operations charged to both Tool A and
Tool D in their respective frameworks.

It should be noted that Tool H includes a fair amount
of overhead for functionality that we are not actively
using in this framework. In many ways, we are grossly
under-utilizing Tool H’s capabilities for this effort.
Therefore, the remainder of this analysis will focus pri-
marily on Tool D and Tool A.

The number of iterations refers to the number of
knowledge modules from section IV-B. We ran tri-
als with 10, 100, 500, and 1000 iterations to observe
how the systems performed as the knowledge bases in-
creased. Three unique datasets were generated for each
of the three sets of iterations to ensure that the times
were consistent. Timing was done using the Unix com-
mand time, and trials with CPU usage under eighty-

TABLE I

Tool D Results

Number of Iterations
Dataset 10 100 500 1000

1 .88s 3.01s 10.75s 17.41s
2 .89s 3.03s 10.73s 17.28s
3 .88s 3.02s 10.70s 17.24s

TABLE II

Tool A Results

Number of Iterations
Dataset 10 100 500 1000

1 .05s .51s 2.68s 5.12s
2 .05s .51s 2.67s 5.12s
3 .05s .51s 2.70s 5.12s

five percent were discarded. The times shown in Table
I and Table II are an average time done over five trials.

In all three stages Tool A outperformed Tool D. At
100 iterations, Tool A was approximately 6 times faster
than Tool D, while at 1000 iterations it drops to less
then 3.5 times faster. Future work could examine if
the two systems converged in speed for a sufficiently
large data set.

C. Analysis

While Tool D and Tool H were both able to ac-
complish the simulated task, Tool A emerged as the
most natural selection for the cost-generator for on-
road driving. The reasons for this are twofold: Tool A
was designed to be embedded within other programs,
specifically within C programs as stated in the doc-
umentation. While it would be possible to interface
both Tool D and Tool H with existing C code using
native function calls in Java and TCL, Tool A pro-
vides functionality specifically for integration with C
programs. Second, within the specific conditions in-
cidental to our domain, Tool A was able to perform
faster than its counterparts (Table II). Because of the
real-time requirements described in Section III, the
speed with which Tool A was able to complete hun-
dreds and thousands of iterations should allow it to
be used within the planning and moving object pre-
diction systems within the 4D/RCS framework. While
Tool H has a powerful inference engine, the overhead
associated with that power wasprohibitive for our ap-
plication. The additional features that we would gain
from using Tool H were interesting from a theoretical
standpoint, but were not essential for our application.

VI. Conclusions and Future Work

The cost-generating sub-system within the au-
tonomous vehicle framework will play an essential role

in a number of other systems in the vehicle, includ-
ing path planning and moving object prediction. An
adequate means for representing the constraints that
generate these costs, as well as managing and relaying
these costs to other systems is necessary. In order to
accomplish this, we had to first determine a suitable
tool for developing the cost-generator. Based on do-
main specific criteria, we were able to narrow the the
selection to three potential tools. Preliminary testing
of these tools suggested that Tool A showed the most
promise for the aforementioned tasks.

Future work will further examine Tool A ability to
adapt to dynamic, and increasingly larger data sets.
We will perform more extensive testing in order to fully
understand the timing results. Furthermore, the rule
base will continue to be expanded and refined to allow
the vehicle to react to a wider variety of more complex
situations in an intellgient fashion.

References

[1] J. Albus and et.al. 4D/RCS Version 2.0: A Reference Model
Architecture for Unmanned Vehicle Systems”. Technical
Report NISTIR 6910, National Institute of Standards and
Technology, Gaitherburg, MD 20899, U.S.A., 2002.

[2] Stephen B. Balakirsky. A Framework for Planning with In-
crementally Created Graphs in Attributed Problem Spaces.
Akademische Verlagsgesellschaft Aka GmbH, 2003.

[3] Dijkstra EW. A Note on Two Problems in Connexion with
Graphs. Merische Mathematik, pages 269–271, 1959.

[4] Robert W. Sebesta. Concepts of Programming Languages.
Addison Wesley, 2002.

[5] David A. Watt. Programming Language Concepts and
Paradigms. Prentice Hall, 1990.

Appendix

TABLE III

Coarse Evaluation

Language Paradigm APIs Real-time Ex-

ecution

Cost Support

Tool A Rule-based C/C++ Based on Rete
Algorithm

Public domain Large commu-
nity, mailing
lists, previ-
ously applied
to robotics
applications

Tool B Rule-based Could not be de-
termined

Concurrent real-
time execution

6000 - 37000 Paid customer
support

Tool C Functional Tools available
for interface
with C and Java

Functional lan-
guages typically
slow (Watts)

Public domain Little support
for robotic apps,
mostly used
by educational
institutions

Tool D Rule-based Java Based on Rete
Algorithm

Academic and
research use
free, licensed for
commercial use

Small but ac-
tive community,
mailing lists,
on-line docu-
mentation

Tool E Rule-based C Interface Unable to deter-
mine

Public domain Mailing lists
with little activ-
ity, unclear how
many people are
using it

Tool F Flavors of func-
tional and rule-
based

Tcl/Tk Functional lan-
guages typically
slow (Watts)

Public domain Little support
for robotic ap-
plications, not
widely used

Tool G Rule-based C++, Java Based on Rete
Algorithm

7500 per CPU Paid customer
support

Tool H Rule-based Java, SGIO in-
terface with C

At best a soft
real-time system

Public domain Large commu-
nity, mailing
lists, previ-
ously applied to
robotics apps

